Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Cell Rep ; 43(4): 114075, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583151

RESUMO

Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and no specific drugs are clinically available. We have previously demonstrated that inhibiting microsomal prostaglandin E synthase-2 (mPGES-2) alleviated type 2 diabetes by enhancing ß cell function and promoting insulin production. However, the involvement of mPGES-2 in DKD remains unclear. Here, we aimed to analyze the association of enhanced mPGES-2 expression with impaired metabolic homeostasis of renal lipids and subsequent renal damage. Notably, global knockout or pharmacological blockage of mPGES-2 attenuated diabetic podocyte injury and tubulointerstitial fibrosis, thereby ameliorating lipid accumulation and lipotoxicity. These findings were further confirmed in podocyte- or tubule-specific mPGES-2-deficient mice. Mechanistically, mPGES-2 and Rev-Erbα competed for heme binding to regulate fatty acid binding protein 5 expression and lipid metabolism in the diabetic kidney. Our findings suggest a potential strategy for treating DKD via mPGES-2 inhibition.


Assuntos
Nefropatias Diabéticas , Metabolismo dos Lipídeos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Podócitos , Prostaglandina-E Sintases , Transdução de Sinais , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/tratamento farmacológico , Prostaglandina-E Sintases/metabolismo , Prostaglandina-E Sintases/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Podócitos/metabolismo , Podócitos/patologia , Podócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Knockout , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Camundongos Endogâmicos C57BL , Rim/patologia , Rim/metabolismo , Masculino , Humanos , Fibrose
2.
Theriogenology ; 216: 146-154, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183931

RESUMO

Up to 50 % of dairy cows fail to resolve uterine involution and develop chronic clinical (CE) or subclinical endometritis (SE) 21 days after calving. Clinical endometritis is associated with purulent discharge, while SE is not associated with overt clinical signs. Along with numerous knowledge gaps related to its pathogenesis, SE does not allow for a straightforward and effective therapy. Therefore, it is crucial to unravel differences in the expression of genes among healthy, CE, and SE cows. This might contribute to the discovery of new drug candidates and, in consequence, a potentially effective treatment. In the present study, cows between 21 and 28 days postpartum (PP) were examined using vaginoscopy for the presence of vaginal discharge and endometrial cytology for the determination of the endometrial polymorphonuclear cell (PMN) percentage. Next, an endometrial biopsy sample was taken to investigate the expression of 13 selected candidate genes by qPCR. Uterine health status was assigned to healthy (absence of abnormal vaginal discharge and ≤5 % PMN, n = 13), SE (absence of abnormal vaginal discharge and >5 % PMN, n = 30), and CE (mucopurulent or purulent vaginal discharge and >5 % PMN, n = 9). At the same time, a blood sample was collected to assess serum progesterone concentration and to categorize cows as low (≤1 ng/mL) or high (>1 ng/mL) in progesterone. High expression of IL1B, IL6, IL17A, CXCL8, PTGES, PTGS1, PTGS2, and INHBA genes and low expression of FST was noted in the endometrium of CE compared to healthy cows. Increased endometrial INHBA expression was observed in both SE and CE compared to healthy cows. Interestingly, greater expression of PTGES and PRXL2B genes and lower expression of PTGS2 were characteristic of SE versus CE or healthy. Among cows with no overt clinical symptoms of uterine disease (healthy and SE), the endometrial expression of IL1 B, CXCL8, and PTGES was greater in cows with high versus low serum progesterone. Several genes were differentially expressed among healthy, SE, and CE cows indicating different pathways for the development of different uterine diseases. In conclusion, we found progesterone-independent SE markers, which suggests that low endometrial PTGS2 expression may be indicative of an inadequate immune response and thus contribute to the pathogenesis of SE.


Assuntos
Doenças dos Bovinos , Endometrite , Descarga Vaginal , Feminino , Bovinos , Animais , Endometrite/genética , Endometrite/veterinária , Endometrite/diagnóstico , Progesterona , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Endométrio/metabolismo , Período Pós-Parto , Prostaglandina-E Sintases/metabolismo , Descarga Vaginal/veterinária , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doenças dos Bovinos/diagnóstico
3.
Cell Death Dis ; 14(10): 710, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907523

RESUMO

Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality but no specific therapy. Microsomal prostaglandin E synthase-2 (mPGES-2) is a PGE2 synthase but can metabolize PGH2 to malondialdehyde by forming a complex with heme. However, the role and mechanism of action of mPGES-2 in AKI remain unclear. To examine the role of mPGES-2, both global and tubule-specific mPGES-2-deficient mice were treated with cisplatin to induce AKI. mPGES-2 knockdown or overexpressing HK-2 cells were exposed to cisplatin to cause acute renal tubular cell injury. The mPGES-2 inhibitor SZ0232 was used to test the translational potential of targeting mPGES-2 in treating AKI. Additionally, mice were subjected to unilateral renal ischemia/reperfusion to further validate the effect of mPGES-2 on AKI. Interestingly, both genetic and pharmacological blockage of mPGES-2 led to decreased renal dysfunction and morphological damage induced by cisplatin and unilateral renal ischemia/reperfusion. Mechanistic exploration indicated that mPGES-2 deficiency inhibited ferroptosis via the heme-dependent regulation of the p53/SLC7A11/GPX4 axis. The present study indicates that mPGES-2 blockage may be a promising therapeutic strategy for AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Cisplatino/efeitos adversos , Heme/metabolismo , Isquemia , Prostaglandina-E Sintases/metabolismo , Proteína Supressora de Tumor p53/genética
4.
Expert Opin Ther Targets ; 27(11): 1115-1123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015194

RESUMO

INTRODUCTION: Prostaglandin E2 (PGE2) is produced by cyclooxygenases (COX-1/2) and the microsomal prostaglandin E synthase 1 (mPGES-1). PGE2 is pro-inflammatory in diseases such as rheumatoid arthritis, cardiovascular disorders, and cancer. While Nonsteroidal anti-inflammatory drugs (NSAIDs) targeting COX can effectively reduce inflammation, their use is limited by gastrointestinal and cardiovascular side effects resulting from the blockade of all prostanoids. To overcome this limitation, selective inhibition of mPGES-1 is being explored as an alternative therapeutic strategy to inhibit PGE2 production while sparing or even upregulating other prostaglandins. However, the exact timing and location of PGH2 conversion to PGD2, PGI2, TXB2 or PGF2α, and whether it hinders or supports the therapeutic effect of mPGES-1 inhibition, is not fully understood. AREAS COVERED: The article briefly describes prostanoid history and metabolism with a strong focus on the vascular effects of prostanoids. Recent advances in mPGES-1 inhibitor development and results from pre-clinical and clinical studies are presented. Prostanoid shunting after mPGES-1 inhibition is highlighted and particularly discussed in the context of cardiovascular diseases. EXPERT OPINION: The newest research demonstrates that inhibition of mPGES-1 is a potent anti-inflammatory treatment strategy and beneficial and safer regarding cardiovascular side effects compared to NSAIDs. Inhibitors of mPGES-1 hold great potential to advance to the clinic and there are ongoing phase-II trials in endometriosis.


Assuntos
Anti-Inflamatórios , Prostaglandinas , Feminino , Humanos , Prostaglandina-E Sintases/metabolismo , Prostaglandinas/metabolismo , Anti-Inflamatórios/farmacologia , Dinoprostona/metabolismo , Anti-Inflamatórios não Esteroides/efeitos adversos , Ciclo-Oxigenase 2/metabolismo
5.
J Agric Food Chem ; 71(41): 15156-15169, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37800952

RESUMO

This study was aimed to investigate the therapeutic effect and mechanism of AKHO on 5-fluorouracil (5-FU)-induced intestinal mucositis in mice. Mouse body weight, diarrhea score, and H&E staining were applied to judge the therapeutic effect of AKHO. 16S rDNA and nontargeted metabolomics have been used to study the mechanism. WB, ELISA, and immunohistochemistry were adopted to validate possible mechanisms. The results demonstrated that AKHO significantly reduced diarrhea scores and intestinal damage induced by 5-FU in mice. AKHO lowered the serum levels of LD and DAO, and upregulated the expressions of ZO-1 and occludin in the ileum. Also, AKHO upregulated the abundance of Lactobacillus in the gut and suppressed KEGG pathways such as cortisol synthesis and secretion and arachidonic acid metabolism. Further validation studies indicated that AKHO downregulated the expressions of prostaglandin E2 (PGE2), microsomal prostaglandin E synthase-1 (mPGES-1), and PGE2 receptor EP4, as well as upregulated the expression of glucocorticoid (GC) receptor (GR), leading to improved intestinal epithelial barrier function. Taken together, AKHO elicited protective effects against 5-FU-induced mucositis by regulating the expressions of tight junction proteins via modulation of GC/GR and mPGES-1/PGE2/EP4 pathway, providing novel insights into the utilization and development of this pharmaceutical/food resource.


Assuntos
Alpinia , Microbioma Gastrointestinal , Mucosite , Óleos Voláteis , Camundongos , Animais , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Dinoprostona , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Óleos Voláteis/farmacologia , Fluoruracila/efeitos adversos , Diarreia
6.
Exp Biol Med (Maywood) ; 248(9): 811-819, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37515545

RESUMO

The cyclooxygenase (COX)/prostaglandin E2 (PGE2) signaling pathway has emerged as a critical target for anti-inflammatory therapeutic development in neurological diseases. However, medical use of COX inhibitors in the treatment of various neurological disorders has been limited due to well-documented cardiovascular and cerebrovascular complications. It has been widely proposed that modulation of downstream microsomal prostaglandin E synthase-1 (mPGES-1) enzyme may provide more specificity for inhibiting PGE2-elicited neuroinflammation. Heightened levels of mPGES-1 have been detected in a variety of brain diseases such as epilepsy, stroke, glioma, and neurodegenerative diseases. Subsequently, elevated levels of PGE2, the enzymatic product of mPGES-1, have been demonstrated to modulate a multitude of deleterious effects. In epilepsy, PGE2 participates in retrograde signaling to augment glutamate release at the synapse leading to neuronal death. The excitotoxic demise of neurons incites the activation of microglia, which can become overactive upon further stimulation by PGE2. A selective mPGES-1 inhibitor was able to reduce gliosis and the expression of proinflammatory cytokines in the hippocampus following status epilepticus. A similar mechanism has also been observed in stroke, where the overactivation of microglia by PGE2 upregulated the expression and secretion of proinflammatory cytokines. This intense activation of neuroinflammatory processes triggered the secondary injury commonly observed in stroke, and blockade of mPGES-1 reduced infarction size and edema, suppressed induction of proinflammatory cytokines, and improved post-stroke well-being and cognition. Furthermore, elevated levels of PGE2 have been shown to intensify the proliferation of glioma cells, mediate P-glycoprotein expression at the blood-brain barrier (BBB) and facilitate breakdown of the BBB. For these reasons, targeting mPGES-1, the central and inducible enzyme of the COX cascade, may provide a more specific therapeutic strategy for treating neuroinflammatory diseases.


Assuntos
Epilepsia , Glioma , Acidente Vascular Cerebral , Humanos , Prostaglandina-E Sintases/metabolismo , Doenças Neuroinflamatórias , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Epilepsia/tratamento farmacológico , Citocinas
7.
Vet Res Commun ; 47(3): 1721-1733, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37154859

RESUMO

Bovine in vitro endometrial models that resemble tissue function in vivo are needed to study infertility, long-term uterine alterations induced by pathogens and impact of endocrine disruptor chemicals on reproductive function and other reproductive system complications that cause high economic losses in livestock species. The present study aimed to generate an innovative, reproducible, and functional 3D scaffold-based model of the bovine endometrium structurally robust for long term-culture. We developed a multicellular model containing both endometrial epithelial and stromal cells. Epithelial cells organized to form a luminal-like epithelial layer on the surface of the scaffold. Stromal cells produced their own extracellular matrix forming a stable subepithelial compartment that physiologically resembles the normal endometrium. Both cell types released prostaglandin E2 and prostaglandin F2α following a treatment with oxytocin and arachidonic acid. Additionally signal pathways mediating oxytocin and arachidonic acid stimulation of prostaglandin synthesis were analyzed by real time PCR (RT-PCR). Oxytocin receptor (OXTR), prostaglandin E2 receptor 2 (EP2), prostaglandin E2 receptor 4 (EP4), prostaglandin F receptor (PTGFR), prostaglandin E synthase (PTGES), PGF-synthase (PGFS) and prostaglandin-endoperoxide synthase 2 (COX-2) expression was detected in both control and treatment groups, however, only significant changes in abundance of OXTR mRNA transcripts were found. The results obtained by this study are a step forward in bovine in vitro culture technology. This 3D scaffold-based model provides a platform to study regulatory mechanisms involved in endometrial physiology and can set the basis for a broader tool for designing and testing novel therapeutic strategies for recurrent uterine pathologies.


Assuntos
Endométrio , Ocitocina , Feminino , Animais , Bovinos , Ocitocina/farmacologia , Ocitocina/metabolismo , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Dinoprostona/metabolismo , Prostaglandina-E Sintases/metabolismo
8.
Prostaglandins Other Lipid Mediat ; 167: 106738, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37094780

RESUMO

Microsomal Prostaglandin E Synthase 1 (mPGES-1) is the key enzyme for the generation of the pro-inflammatory lipid mediator prostaglandin E2 (PGE2), which contributes to several pathological features of many diseases. Inhibition of mPGES-1 has been shown to be a safe and effective therapeutic strategy in various pre-clinical studies. In addition to reduced PGE2 formation, it is also suggested that the potential shunting into other protective and pro-resolving prostanoids may play an important role in resolution of inflammation. In the present study, we analysed the eicosanoid profiles in four in vitro inflammation models and compared the effects of mPGES-1 inhibition with those of cyclooxygenase-2 (Cox-2) inhibition. Our results showed a marked shift to the PGD2 pathway under mPGES-1 inhibition in A549 cells, RAW264.7 cells and mouse bone marrow-derived macrophages (BMDMs), whereas enhanced prostacyclin production was observed in rheumatoid arthritis synovial fibroblasts (RASFs) treated with an mPGES-1 inhibitor. As expected, Cox-2 inhibition completely suppressed all prostanoids. This study suggests that the therapeutic effects of mPGES-1 inhibition may be mediated by modulation of other prostanoids in addition to PGE2 reduction.


Assuntos
Inflamação , Prostaglandinas , Camundongos , Animais , Prostaglandina-E Sintases/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ácido Araquidônico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Dinoprostona/metabolismo , Eicosanoides
9.
J Neuroinflammation ; 20(1): 99, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118736

RESUMO

BACKGROUND: Pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates serine (S) 10 site on neurofibromin 2 (NF2, also known as merlin (moesin-ezrin-radixin-like protein) or schwannomin). p21-activated kinase 1 (PAK1) is a serine/threonine protein kinase, which is involved in synaptic activity and plasticity in neurons. NF2 and PAK1 reciprocally regulate each other in a positive feedback manner. Thus, the aim of the present study is to investigate the effects of PLPP/CIN-mediated NF2 S10 dephosphorylation on PAK1-related signaling pathways under physiological and neuroinflammatory conditions, which are largely unknown. METHODS: After kainate (KA) injection in wild-type, PLPP/CIN-/- and PLPP/CINTg mice, seizure susceptibility, PAK1 S204 autophosphorylation, nuclear factor-κB (NF-κB) p65 S276 phosphorylation, cyclooxygenase-2 (COX-2) upregulation, prostaglandin E synthase 2 (PTGES2) induction and neuronal damage were measured. The effects of 1,1'-dithiodi-2-naphthtol (IPA-3, a selective inhibitor of PAK1) pretreatment on these responses to KA were also validated. RESULTS: PLPP/CIN overexpression increased PAK1 S204 autophosphorylation concomitant with the enhanced NF2 S10 dephosphorylation in hippocampal neurons under physiological condition. Following KA treatment, PLPP/CIN overexpression delayed the seizure on-set and accelerated PAK1 S204 phosphorylation, NF-κB p65 S276 phosphorylation, COX-2 upregulation and PTGES2 induction, which were ameliorated by PLPP/CIN deletion or IPA-3. Furthermore, IPA-3 pretreatment shortened the latency of seizure on-set without affecting seizure severity (intensity) and ameliorated CA3 neuronal death induced by KA. CONCLUSIONS: These findings indicate that PLPP/CIN may regulate seizure susceptibility (the latency of seizure on-set) and CA3 neuronal death in response to KA through NF2-PAK1-NF-κB-COX-2-PTGES2 signaling pathway.


Assuntos
NF-kappa B , Neurofibromina 2 , Camundongos , Animais , NF-kappa B/metabolismo , Neurofibromina 2/metabolismo , Neurofibromina 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Quinases Ativadas por p21/metabolismo , Ácido Caínico/toxicidade , Prostaglandina-E Sintases/metabolismo , Fosfatos , Transdução de Sinais , Convulsões/induzido quimicamente , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação
10.
Br J Pharmacol ; 180(15): 1981-1998, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36788645

RESUMO

BACKGROUND AND PURPOSE: Heart failure with reduced ejection fraction (HFrEF) is a major consequence of myocardial infarction (MI). The microsomal prostaglandin E synthase-1 (mPGES-1)/PGE2 pathway has been shown to constrain reperfusion injury after acute myocardial ischaemia. However, it is unknown whether pharmacological inhibition of mPGES-1, a target with lower risk of thrombosis compared with selective inhibition of cyclooxygenase-2, affects chronic cardiac remodelling after MI. EXPERIMENTAL APPROACH: Mice were subjected to left anterior descending coronary artery ligation, followed by intraperitoneal treatment with the mPGES-1 inhibitor compound III (CIII) or 118, celecoxib (cyclooxygenase-2 inhibitor) or vehicle, once daily for 28 days. Urinary prostanoid metabolites were measured by liquid chromatography-tandem mass spectrometry. KEY RESULTS: Chronic administration of CIII improved cardiac function in mice after MI compared with vehicle or celecoxib. CIII did not affect thrombogenesis or blood pressure. In addition, CIII reduced infarct area, augmented scar thickness, decreased collagen I/III ratio, decreased the expression of fibrosis-related genes and increased capillary density in the ischaemic area. Shunting to urinary metabolites of PGI2 , not thromboxane B2 or PGD2 , after inhibition of mPGES-1 was positively correlated with cardiac function after MI. CIII administration significantly increased urinary PGI2 /PGE2 metabolite ratio compared to vehicle or celecoxib. The PGI2 /PGE2 metabolite ratio correlated positively with ejection fraction, fractional shortening and scar thickness. Treatment with 118 also improved cardiac function. CONCLUSION AND IMPLICATIONS: Inhibition of mPGES-1 prevented chronic adverse cardiac remodelling via an augmented PGI2 /PGE2 metabolite ratio and therefore represents a potential therapeutic strategy for development of HFrEF after MI.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Camundongos , Prostaglandina-E Sintases/metabolismo , Celecoxib/farmacologia , Cicatriz , Remodelação Ventricular , Volume Sistólico , Infarto do Miocárdio/genética , Inibidores de Ciclo-Oxigenase 2
11.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769370

RESUMO

Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and cardiovascular morbidity. The pathogenesis of NAFLD is complex and multifactorial, with many molecular pathways implicated. Emerging data suggest that microsomal prostaglandin E synthase-1 and -2 might participate in the development and progression of NAFLD. It also appears that targeting these enzymes might represent a novel therapeutic approach for NAFLD. In the present review, we discuss the association between microsomal prostaglandin E synthase-1 and -2 and NAFLD.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Prostaglandina-E Sintases/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo
12.
Comput Biol Med ; 155: 106616, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36780799

RESUMO

Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase expressed following exposure to pro-inflammatory stimuli. The mPGES-1 enzyme represents a new target for the therapeutic treatment of acute and chronic inflammatory disorders and cancer. In the present study, compounds from the ZINC15 database with an indole scaffold were docked at the mPGES-1 binding site using Glide (high-throughput virtual screening [HTVS], standard precision [SP] and extra precision [XP]), and the stabilities of the complexes were determined by molecular simulation studies. Following HTVS, the top 10% compounds were retained and further screened by SP. Again, the top 10% of these compounds were retained. Finally, the Glide XP scores of the compounds were determined, 20% were analyzed, and the Prime MM-GBSA total free binding energies of the compounds were calculated. The molecular simulations (100 ns) of the reference ligand, LVJ, and the two best-scoring compounds were performed with the Desmond program to analyze the dynamics of the target protein-ligand complexes. In human lung cells treated with the hit compounds, cell viability by colorimetric method and PGE2 levels by immunoassay method were determined. These in vitro experiments demonstrated that the two indole-containing hit compounds are potential novel inhibitors of mPGES-1 and are, therefore, potential therapeutic agents for cancer/inflammation therapies. Moreover, the compounds are promising lead mPGES-1 inhibitors for novel molecule design.


Assuntos
Bioensaio , Inflamação , Humanos , Prostaglandina-E Sintases/metabolismo , Ligantes , Sítios de Ligação , Inibidores Enzimáticos/farmacologia
13.
Inflammation ; 46(3): 893-911, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36598592

RESUMO

Inflammation is a hallmark in severe diseases such as atherosclerosis and non-alcohol-induced steatohepatitis (NASH). In the development of inflammation, prostaglandins, especially prostaglandin E2 (PGE2), are major players alongside with chemo- and cytokines, like tumor-necrosis-factor alpha (TNFα) and interleukin-1 beta (IL-1ß). During inflammation, PGE2 synthesis can be increased by the transcriptional induction of the two key enzymes: cyclooxygenase 2 (COX-2), which converts arachidonic acid to PGH2, and microsomal prostaglandin E2 synthase 1 (mPGES-1), which synthesizes PGE2 from PGH2. Both COX-2 and mPGES-2 were induced by a dietary intervention where mice were fed a fatty acid-rich and, more importantly, cholesterol-rich diet, leading to the development of NASH. Since macrophages are the main source of PGE2 synthesis and cholesterol is predominantly transported as LDL, the regulation of COX-2 and mPGES-1 expression by native LDL was analyzed in human macrophage cell lines. THP-1 and U937 monocytes were differentiated into macrophages, through which TNFα and PGE-2 induced COX-2 and mPGES-1 expression by LDL could be analyzed on both mRNA and protein levels. In addition, the interaction of LDL- and EP receptor signal chains in COX-2/mPGES-1 expression and PGE2-synthesis were analyzed in more detail using EP receptor specific agonists. Furthermore, the LDL-mediated signal transduction in THP-1 macrophages was analyzed by measuring ERK and Akt phosphorylation as well as transcriptional regulation of transcription factor Egr-1. COX-2 and mPGES-1 were induced in both THP-1 and U937 macrophages by the combination of TNFα and PGE2. Surprisingly, LDL dose-dependently increased the expression of mPGES-1 but repressed the expression of COX-2 on mRNA and protein levels in both cell lines. The interaction of LDL and PGE2 signal chains in mPGES-1 induction as well as PGE2-synthesis could be mimicked by through simultaneous stimulation with EP2 and EP4 agonists. In THP-1 macrophages, LDL induced Akt-phosphorylation, which could be blocked by a PI3 kinase inhibitor. Alongside blocking Akt-phosphorylation, the PI3K inhibitor inhibited LDL-mediated mPGES-1 induction; however, it did not attenuate the repression of COX-2 expression. LDL repressed basal ERK phosphorylation and expression of downstream transcription factor Egr-1, which might lead to inhibition of COX-2 expression. These findings suggest that simultaneous stimulation with a combination of TNFα, PGE2, and native LDL-activated signal chains in macrophage cell lines leads to maximal mPGES-1 activity, as well repression of COX-2 expression, by activating PI3K as well as repression of ERK/Egr-1 signal chains.


Assuntos
Dinoprostona , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos/metabolismo , Linhagem Celular , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Ciclo-Oxigenase 1/metabolismo , Prostaglandina H2/metabolismo , Fatores de Transcrição/metabolismo , RNA Mensageiro/metabolismo
14.
Hepatology ; 78(2): 547-561, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839302

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD), a complex metabolic syndrome, has limited therapeutic options. Microsomal prostaglandin E synthase-2 (mPGES-2) was originally discovered as a prostaglandin E 2 (PGE 2 ) synthase; however, it does not produce PGE 2 in the liver. Moreover, the role of mPGES-2 in NAFLD remains undefined. Herein, we aimed to determine the function and mechanism of mPGES-2 in liver steatosis and steatohepatitis. APPROACH AND RESULTS: To evaluate the role of mPGES-2 in NAFLD, whole-body or hepatocyte-specific mPGES-2-deficient mice fed a high-fat or methionine-choline-deficient diet were used. Compared with control mice, mPGES-2-deficient mice showed reduced hepatic lipid accumulation, along with ameliorated liver injury, inflammation, and fibrosis. Furthermore, the protective effect of mPGES-2 deficiency against NAFLD was dependent on decreased cytochrome P450 4A14 and increased acyl-CoA thioesterase 4 levels regulated by the heme receptor nuclear receptor subfamily 1 group D member 1 (NR1D1), but not PGE 2 . Heme regulated the increased NR1D1 activity mediated by mPGES-2 deficiency. Further, we confirmed the protective role of the mPGES-2 inhibitor SZ0232 in NAFLD therapy. CONCLUSION: Our study indicates the pathogenic role of mPGES-2 and outlines the mechanism in mediating NAFLD, thereby highlighting the therapeutic potential of mPGES-2 inhibition in liver steatosis and steatohepatitis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Prostaglandina-E Sintases/metabolismo , Heme , Modelos Animais de Doenças , Fígado/patologia , Camundongos Endogâmicos C57BL
15.
FEBS J ; 290(2): 533-549, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031392

RESUMO

Prostaglandin E2 (PGE2) is one of the most abundant prostaglandins and has been implicated in various diseases. Here, we aimed to explore the role of the PGE2 pathway in mediating ferroptosis during acute kidney injury. When renal tubular epithelial cells stimulated by H2 O2 , the contents of glutathione (GSH) and glutathione peroxidase 4 (GPX4) decreased, whereas the level of lipid peroxide increased. Ferrostatin-1 can effectively attenuate these changes. In this process, the expression levels of cyclooxygenase (COX)-1 and COX-2 were up-regulated. Meanwhile, the expression of microsomal prostaglandin E synthase-2 was elevated, whereas the expression of microsomal prostaglandin E synthase-1 and cytosolic prostaglandin E synthase were down-regulated. Furthermore, the expression of 15-hydroxyprostaglandin dehydrogenase decreased. An excessive accumulation of PGE2 promoted ferroptosis, whereas the PGE2 inhibitor pranoprofen minimized the changes for COX-2, GSH, GPX4 and lipid peroxides. A decrease in the levels of the PGE2 receptor E-series of prostaglandin 1/3 partially restored the decline of GSH and GPX4 levels and inhibited the aggravation of lipid peroxide. Consistent with the in vitro results, increased PGE2 levels led to increased levels of 3,4-methylenedioxyamphetamine, Fe2+ accumulation and decreased GSH and GPX4 levels during renal ischaemia/reperfusion injury injury in mice. Our results indicate that the PGE2 pathway mediated oxidative stress-induced ferroptosis in renal tubular epithelial cells.


Assuntos
Dinoprostona , Ferroptose , Camundongos , Animais , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Ferroptose/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Peróxidos Lipídicos/farmacologia , Estresse Oxidativo , Células Epiteliais/metabolismo
16.
Cardiovasc Res ; 119(5): 1218-1233, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-35986688

RESUMO

AIMS: Microsomal prostaglandin E synthase-1 (mPGES-1)/prostaglandin E2 (PGE2) induces angiogenesis through the prostaglandin E2 receptor (EP1-4). Among immune cells, regulatory T cells (Tregs), which inhibit immune responses, have been implicated in angiogenesis, and PGE2 is known to modulate the function and differentiation of Tregs. We hypothesized that mPGES-1/PGE2-EP signalling could contribute to recovery from ischaemic conditions by promoting the accumulation of Tregs. METHODS AND RESULTS: Wild-type (WT), mPGES-1-deficient (mPges-1-/-), and EP4 receptor-deficient (Ep4-/-) male mice, 6-8 weeks old, were used. Hindlimb ischaemia was induced by femoral artery ligation. Recovery from ischaemia was suppressed in mPges-1-/- mice and compared with WT mice. The number of accumulated forkhead box protein P3 (FoxP3)+ cells in ischaemic muscle tissue was decreased in mPges-1-/- mice compared with that in WT mice. Expression levels of transforming growth factor-ß (TGF-ß) and stromal cell derived factor-1 (SDF-1) in ischaemic tissue were also suppressed in mPges-1-/- mice. The number of accumulated FoxP3+ cells and blood flow recovery were suppressed when Tregs were depleted by injecting antibody against folate receptor 4 in WT mice but not in mPges-1-/- mice. Recovery from ischaemia was significantly suppressed in Ep4-/- mice compared with that in WT mice. Furthermore, mRNA levels of Foxp3 and Tgf-ß were suppressed in Ep4-/- mice. Moreover, the number of accumulated FoxP3+ cells in ischaemic tissue was diminished in Ep4-/- mice compared with that in Ep4+/+ mice. CONCLUSION: These findings suggested that mPGES-1/PGE2 induced neovascularization from ischaemia via EP4 by promoting the accumulation of Tregs. Highly selective EP4 agonists could be useful for the treatment of peripheral artery disease.


Assuntos
Dinoprostona , Linfócitos T Reguladores , Camundongos , Masculino , Animais , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Linfócitos T Reguladores/metabolismo , Camundongos Knockout , Isquemia/genética , Fator de Crescimento Transformador beta , Fatores de Transcrição Forkhead/genética
17.
J Lipid Res ; 63(12): 100310, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370807

RESUMO

Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE2 and can lead to shunting of PGH2 into the prostaglandin D2 (PGD2)/15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) pathway. 15dPGJ2 forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ2 via conjugation with GSH, to form 15dPGJ2-glutathione (15dPGJ2-GS) and 15dPGJ2-cysteine (15dPGJ2-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD2/15dPGJ2 pathway in mouse and human immune cells. Our results demonstrate the formation of PGD2, 15dPGJ2, 15dPGJ2-GS, and 15dPGJ2-Cys in RAW264.7 cells after lipopolysaccharide stimulation. Moreover, 15dPGJ2-Cys was found in lipopolysaccharide-activated primary murine macrophages as well as in human mast cells following stimulation of the IgE-receptor. Our results also suggest that the microsomal glutathione S-transferase 3 is essential for the formation of 15dPGJ2 conjugates. In contrast to inhibition of cyclooxygenase, which leads to blockage of the PGD2/15dPGJ2 pathway, we found that inhibition of mPGES-1 preserves PGD2 and its metabolites. Collectively, this study highlights the formation of 15dPGJ2-GS and 15dPGJ2-Cys in mouse and human immune cells, the involvement of microsomal glutathione S-transferase 3 in their biosynthesis, and their unchanged formation following inhibition of mPGES-1. The results encourage further research on their roles as bioactive lipid mediators.


Assuntos
Cisteína , Prostaglandinas , Camundongos , Humanos , Animais , Lipopolissacarídeos/metabolismo , Mastócitos , Prostaglandina-E Sintases/metabolismo , Macrófagos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Prostaglandina D2/farmacologia
18.
ChemMedChem ; 17(22): e202200327, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36111583

RESUMO

We identified 2,4-dinitro-biphenyl-based compounds as new inhibitors of leukotriene C4 synthase (LTC4 S) and 5-lipoxygenase-activating protein (FLAP), both members of the "Membrane Associated Proteins in Eicosanoid and Glutathione metabolism" (MAPEG) family involved in the biosynthesis of pro-inflammatory eicosanoids. By molecular docking we evaluated the putative binding against the targets of interest, and by applying cell-free and cell-based assays we assessed the inhibition of LTC4 S and FLAP by the small molecules at low micromolar concentrations. The present results integrate the previously observed inhibitory profile of the tested compounds against another MAPEG member, i. e., microsomal prostaglandin E2 synthase (mPGES)-1, suggesting that the 2,4-dinitro-biphenyl scaffold is a suitable molecular platform for a multitargeting approach to modulate pro-inflammatory mediators in inflammation and cancer treatment.


Assuntos
Compostos de Bifenilo , Glutationa Transferase , Simulação de Acoplamento Molecular , Proteínas Ativadoras de 5-Lipoxigenase , Compostos de Bifenilo/farmacologia , Prostaglandina-E Sintases/metabolismo
19.
Food Funct ; 13(19): 10200-10209, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36111584

RESUMO

Ligstroside aglycon (LA) is one of the main polyphenols in extra virgin olive oil (EVOO); nevertheless, it is scarcely investigated. The aim of this study was to evaluate the immunomodulatory and anti-inflammatory effects of LA on lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages, as well as the potential signaling pathways involved. Isolated macrophages were treated with LA (50, 25, and 12.5 µM) in the presence or absence of LPS (5 µg ml-1) for 18 h. Cell viability was determined using the sulforhodamine B (SRB) assay. Nitric oxide (NO) and pro-inflammatory cytokine production was analyzed by the Griess method and enzyme-linked immunosorbent assay (ELISA), respectively. Protein expression of pro-inflammatory markers and signaling pathways were evaluated by western blot analysis. LA showed significant antioxidant and anti-inflammatory effects through decreasing oxidative stress markers such as NO production, inducible nitric oxide synthase (iNOS) and NADPH oxidase-1 (NOX-1) protein expression. Besides, LA was able to reduce pro-inflammatory cytokine levels and modulate cyclo-oxygenase-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGEs-1) protein overexpression. The mechanisms underlying these protective effects could be related via activation of nuclear factor (erythroid-derived 2)-like (Nrf2)/heme oxygenase 1 (HO-1) and inhibition of nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), and Janus kinase/signal transducer and activation of transcription (JAK2/STAT3) signaling pathways. In addition, LA inhibited non-canonical and canonical activation of a nucleotide-binding (NOD)-like receptor (NLRP3) inflammasome. We conclude that LA showed significant antioxidant and anti-inflammatory activities in LPS-stimulated murine peritoneal macrophages. However, further in vivo studies are warranted to further investigate the bioactivity of this interesting compound that might be a promising natural agent for the treatment of immune-inflammatory diseases.


Assuntos
Heme Oxigenase-1 , Lipopolissacarídeos , Animais , Anti-Inflamatórios/metabolismo , Antioxidantes/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Glucosídeos , Heme Oxigenase-1/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Iridoides/farmacologia , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Janus Quinases/uso terapêutico , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Nucleotídeos/farmacologia , Azeite de Oliva/farmacologia , Prostaglandina-E Sintases/metabolismo , Piranos , Transdução de Sinais
20.
In Vivo ; 36(5): 2061-2073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36099134

RESUMO

BACKGROUND/AIM: Microsomal prostaglandin E synthase-1 (mPGES-1) is an enzyme, which catalyzes the final step of prostaglandin E2 (PGE2) synthesis. PGE2 in involved in wound-induced angiogenesis. Regulatory T cells (Tregs) regulate not only immune tolerance but also tissue repair and angiogenesis. We examined whether the mPGES-1/PGE2 axis contributes to wound-induced angiogenesis and granulation tissue formation through Treg accumulation. MATERIALS AND METHODS: The dorsal subcutaneous tissues of male mPGES-1-deficient (mPGES-1-/-) and C57BL/6 wild-type (WT) mice were implanted with polyurethane sponge disks. Angiogenesis was estimated by determining the wet weight of sponge tissues and the expression of proangiogenic factors including CD31, vascular endothelial growth factor (VEGF), and transforming growth factor ß (TGF-ß) in granulation tissues. RESULTS: Angiogenesis was suppressed in mPGES-1-/- mice compared with WT mice, which was associated with attenuated forkhead box P3 (Foxp3) expression and Foxp3+ Treg accumulation. The number of cells double-positive for Foxp3/TGFß and Foxp3/VEGF were lower in mPGES-1-/- mice than in WT mice. Neutralizing Tregs with antibodies (Abs) against CD25 or folate receptor 4 (FR4) inhibited the Foxp3+ Treg angiogenesis and accumulation in WT mice, but not in mPGES-1-/- mice. The topical application of PGE2 into the implanted sponge enhanced angiogenesis and accumulation of Tregs expressing TGFß and VEGF in WT and mPGES-1-/- mice. CONCLUSION: Tregs producing TGFß and VEGF accumulate in wounds and contribute to angiogenesis through mPGES-1-derived PGE2 mPGES-1 induction may control angiogenesis in skin wounds by recruiting Tregs.


Assuntos
Prostaglandina-E Sintases/metabolismo , Linfócitos T Reguladores , Fator A de Crescimento do Endotélio Vascular , Animais , Dinoprostona/metabolismo , Fatores de Transcrição Forkhead , Tecido de Granulação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/genética , Prostaglandina-E Sintases/genética , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...